Chapter 172: Math Game
Although Chen Zhou has decided to work on a difficult topic, such as the Goldbach conjecture, the twin prime conjecture, the Riemann conjecture, the Hodge conjecture, the ABC conjecture and so on.
He didn't think it was appropriate, first, it was a matter of time.
I'm afraid that the system tasks are overdue for many years, and he may not be able to solve these problems.
First, these conjectures need to be gradual in a certain sense.
Especially the conjecture of the class of prime numbers.
In the case that both the sieve method and the circular method are approaching the limit, it is difficult for Chen Zhou to break through for a while.
What is needed is accumulation.
What's more, Chen Zhou secretly felt that the solution of these conjectures might have to wait.
Just when Chen Zhou was distressed, the small class of the algebra seminar began.
Chen Zhou thought that Professor Wu Xiping would be the first to open a small class discussion class, but he didn't expect to be preempted by Zhang Zhongyuan's classroom.
It's just that the first lesson of the algebra seminar did not discuss a certain issue as Chen Zhou expected.
Zhang Zhongyuan just casually asked some math questions and asked the students to answer by themselves, and if he couldn't answer them, he answered them by the way.
Among them, of course, there is no collision of students' thinking.
"Today is your first small class since you entered the Department of Mathematics of Yan University, and I don't want to talk about something too esoteric, so let's talk about mathematics and algebra. ”
Zhang Zhongyuan's opening remarks set the tone for this small class class.
After finishing speaking, Zhang Zhongyuan glanced at the students under the podium, and when he saw Chen Zhou, he was slightly surprised, but he also roughly guessed Chen Zhou's thoughts.
Chen Zhou noticed Zhang Zhongyuan's gaze and smiled at him.
Zhang Zhongyuan was stunned for a moment, and then thought that it seemed that he had to do something difficult today......
Zhang Zhongyuan coughed lightly and continued: "Algebra is actually a more advanced evolution of arithmetic, when a large number of solutions to their respective quantity problems have been accumulated in arithmetic. In order to find a more systematic and general way to solve the problems of various quantitative relations, elementary algebra was born with the principle of solving algebraic equations as the central problem. ”
After a pause, Zhang Zhongyuan asked, "Then do you know who is the person who really founded algebra?"
Someone replied: "The ancient Greek mathematician Diophantus." ”
Chen Zhou secretly said in his heart: "No. ”
Sure enough, I saw Zhang Zhongyuan shaking his head slightly.
At this time, Chen Zhou heard Zhao Qiqi's voice, and he said: "It is the ancient mathematicians Zhang Cang and Geng Shouchang in China, and there are equation problems in the "Nine Chapters of Arithmetic" written by them. ”
Chen Zhou was slightly stunned, he didn't expect this kid to know a lot, but it's a pity......
Zhang Zhongyuan said with a smile: "Zhao Qiqi's idea is good, but it's a pity that this is not traced back to the source, but asked who founded it." ”
Zhao Qiqi smiled innocently, and then lost his voice.
Zhang Zhongyuan waited for a while, saw that no one answered, and was about to say the correct answer, but was preempted.
"It was the ancient Arab mathematician Moussa. ”
When Zhang Zhongyuan heard this, he looked at Chen Zhou who said this with some surprise.
He didn't expect such a cold history of mathematics, and Chen Zhou also knew it.
In fact, Chen Zhou only saw it by chance.
In the past two days, in order to systematically establish the idea of topic selection, he traced many branches of mathematics back to their roots.
Moreover, he didn't plan to answer originally, but these small class students didn't give up, and none of them said it, so wouldn't Professor Zhang pretend to be forced?
Chen Zhou naturally felt that it was inappropriate, and he still had to fight for their mathematics department.
That's why he replied out loud.
Seeing Chen Zhou looking at him, Zhang Zhongyuan nodded lightly: "That's right, it is indeed the ancient Arab mathematician Moussa who founded algebra. ”
Hearing Zhang Zhongyuan's words, these students from the Department of Mathematics looked at Chen Zhou with inexplicable eyes again, could it be that to learn mathematics, you must first learn the history of mathematics?
Zhang Zhongzhi didn't care what these students thought, he coughed lightly, focused the eyes of his classmates on himself again, and said again: "In fact, the research object of algebra is not only numbers, but more, and more difficult is the abstract structure of each other. We don't care what the number itself is, we only care about the relationships and their nature. ”
Speaking of this, Zhang Zhongyuan changed his words: "Well, let's leave you a task, the next small class class, what we want to discuss." Go back and take a closer look at the Galois theory. ”
This Professor Zhang, what does it mean to interpret the Galois theory?
You know, this thing is not so easy to interpret, and the timeline in it spans two or three centuries.
The establishment of Galois theory not only completed the research begun by Lagrange, Ruffini, Abel and others, but also played a vital role in opening up the road of abstract algebra.
Thinking of this, Chen Zhou looked at Zhang Zhongyuan with a strange expression, he felt that Zhang Zhongyuan was a little embarrassed by these people?
Zhang Zhongyuan also looked at Chen Zhou, smiled slightly, and immediately got up and wrote a line on the whiteboard.
The moment Chen Zhou saw this line of words, he was slightly stunned.
What kind of routine is this, and what is the meaning of this lesson?
Although this question is a category of abstract algebra, what do you want to do?
Just when Chen Zhou was puzzled, Zhang Zhongyuan turned around, pointed to the content on the whiteboard, and slowly said, "Next, let's play a math game." You can bring a number you like, use the algorithm I wrote, calculate it, and see the final result. ”
Before Zhang Zhongyuan could finish speaking, he heard someone ask, "Professor, is this a hail conjecture?"
Zhang Zhongyuan raised his eyebrows, and then replied: "That's right, this is indeed hail conjecture. But we don't talk about conjectures today, we just play games. ”
The man stopped talking, silently lowered his head, took a pen and randomly substituted numbers for calculations.
Chen Zhou glanced at the whiteboard.
If you push back a week, this thing is not familiar to him.
But now, he's all too familiar.
Life is inseparable from conjecture.
Solving math problems requires conjecture.
Scientific research is based on conjecture.
Guess, can't get around the bend.
Good conjectures are like guiding stones, guiding the development of science.
From conjecture to discovery, there will be treasures in the process.
One day in 1976, the Washington Post ran a math story on its front page.
The text tells a mathematical story.
In the mid-70s, people wanted to go crazy on the campuses of famous universities in the United States, and they played a number game day and night.
The game itself is simple.
Write a positive integer N arbitrarily and transform it according to a certain law.
The law is that if N is an odd number, then the next step becomes 3N+1.
If N is an even number, the next step becomes N/2.
Not only students, but also lecturers, researchers, professors, and some of the old pedants who don't usually show up, joined in.
They have a lot of fun playing the numbers game.
Why does this game have so much charm?
Because, after countless trials, they found out.
No matter what kind of number N is, it will eventually be able to escape back to the bottom and become the number 1.
To be precise, there is no escaping the magic of the number itself, which will eventually fall into the 4-2-1 cycle at the bottom.
Forever.
This is known as the "hail conjecture".
Chen Zhou retracted his thoughts and substituted a special value of "27".
Although 27 is a common natural number, it is a number of special significance in the history of the "hail conjecture".